This notebook implements Algorithm 1 from "Contextuality

 without access to a tomographically complete set" by Matthew F. Pusey, Lídia del Rio and Bettina Meyer. If you want to use the CDDinterface to do vertex enumeration, you should first run cdd_interface.nb. © 2021 Matthew F. Pusey
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

```
(* As an example, generate some stats for a qubit *)
n=5;
\eta = 0.89;
points = Table[{\eta\operatorname{Sin}[0],\eta\operatorname{Cos[0]} /. 0}->2\pi\frac{x+1/4}{n}\mathrm{ ,}
    {x,0,n-1}];(* Bloch vectors of n states
    (X and Z components only) *)
meas = {{0, 1},{1, 0},{Sin[3 \pi/10], Cos[3 \pi/10]}};
(* Bloch vectors of measurement projectors *)
```

Show[RegionPlot[And @@(-1 $\leq \# \cdot\{x, y\} \leq 1 \& / @ m e a s)$,

$$
\{x,-1.2,1.2\},\{y,-1.2,1.2\}],
$$

Graphics[\{\{Gray, Circle[]\},
MapIndexed[Text[\# 2, \#]\&, points]\}]]
(* Show the polygon where the measurements in meas would give valid probabilities,
the Bloch sphere, and the states as numbers *)
stats $=\operatorname{Table}\left[\frac{r \cdot p+1}{2},\{p\right.$, points $\},\{r$, meas $\left.\}\right] ;$
(* Calculate the probability of each measurement outcome for each state *)
Labeled[MatrixForm[stats], "stats =", Left]

(* From now on we just need the matrix stats, could come from above calculation, or from experimental data, etc*)
\{n, m\} = Dimensions[stats];
$\boldsymbol{\lambda} s=2^{\mathrm{m}} ;(*$ The hidden variable gives a deterministic outcome to every measurement,
so there are 2^{m} possible values *)
λ for[meas $]:=$ Table[If[$\lambda[[$ meas $]]==1,1,0]$,
$\{\lambda, \operatorname{Tuples}[\{0,1\}, m]]$
(* Gives a vector of length $\lambda \mathrm{s}$,

```
where each entry is 1 if the corresponding
    hidden variable says that measurement number
    meas occurs, and 0 otherwise *)
(* N.B.: CDD is given (in)equalities on points
    in the polytope x in the form of a vector a,
so that a a + a }\mp@subsup{a}{1}{}\mp@subsup{x}{1}{}+\mp@subsup{a}{2}{}\mp@subsup{x}{2}{}+\ldots..is \geq0 or =0 *
norm = Join[{-1}, ConstantArray[1, \lambdas]];
(* Normalization equality: -1 + \Sigma\lambdaprob(\lambda) = 0 *)
pos = Join[{0}, #] &/@ IdentityMatrix[\lambdas];
(* Positivity inequality: for each \lambda, prob(\lambda) \geq 0 *)
reproduce[stat]:=
    MapIndexed[Join[{-# }, \lambdafor[# 4[1]]]] &, stat]
(* Equality of reproducing the operational
    statistics in stat: for each measurement i,
-stati + \ \ < \lambdafor(i)}\operatorname{Prob}(\lambda)=0 *
(* N.B.: cddHtoV takes two
    arguments: a list of equalities and a list
        of inequalities. It returns a list of
        extreme points *)
poly[stat ] := cddHtoV[Join[{norm}, reproduce[stat]], pos]
(* Use CDD to find extreme points of polytope
    of hidden-variable distributions that
    reproduce stat *)
(* Consider two polytopes with lists of vertices
    v1 and v2
    If they do not intersect,
then there exists a gap between them,
i.e. there exists x, c1,
c2 with v.x \leq c1 for all v \in
v1 whereas v.x \geq c2 for all v \in v2, and c1 < c2.
```

```
            Here this is implemented as a linear
            program: the first variable is c1 - c2,
    which is minimized
            The second variable is c1
            The remaining variables are x
            To ensure the problem always has a bounded
                    solutino we require the first variable is \geq -1
                    If the polytopes do intersect,
then c1 \geq c2 and so the first variable is
                    positive. In this case the minimum value is 0,
    because we can always set c1, c2 and x to zero.
    *)
    intersection[v1, v2 ]:= Module[{one1, one2},
        one1 = ConstantArray[1, {Length[v1], 1}];
        one2 = ConstantArray[1, {Length[v2], 1}];
        LinearProgramming[Join[{1}, ConstantArray[0, \lambdas + 1]],
        ArrayFlatten[[\begin{array}{ccc}{0\mathrm{ one1 one1 c-v1}}\\{\mathrm{ one2 -one2 v2}}\end{array}],Flatten[0}0\mathrm{ one1
        Join[{-1}, ConstantArray[-\infty, \lambdas + 1]]]]
    intersects[v1 , v2 ] := Chop[intersection[v1, v2][[1]]] == 0
In[\odot]:=(* Find all pairs of disjoint subsets of states
        with size at least 2 *)
    pointidxs = Range[n];
    pairidxs = DeleteDuplicates[
        Flatten[
        Table[Sort[{x, #}] &/@
            Subsets[Complement[pointidxs, x], {2, n}],
        {x, Subsets[pointidxs, {2, n-2}]}], 1]];
In[\sigma]:= (* Find the polytope for each state using cdd *)
        polys = polyl@stats;
```

```
In[0 := (* For each pair of subsets of states,
    figure out if the convex hull of their polytopes
        intersect. If they intersect,
        then there exists a mixture of each subset
        that can be represented by the same distribution
        over hidden variables. For all we know,
        this might be the only mixture that gives the
            same operational probabilities for the unknown
            additional measurements. Hence we cannot
        prove preparation contextuality. So we're
        hoping to get all False. *)
        result =
        intersects[Join@@ polys[[# ]],
            Join@@ polys[[# 7]] & @@@ pairidxs
    If[Or@@result,
        "I could not determine whether there is a
        noncontextual model",
    "The proof of contextuality is robust"]
Out0 = {False, False, False, False, False, False,
    False, False, False, False, False, False,
    False, False, False, False, False, False,
    False, False, False, False, False, False, False}
Out[0]= The proof of contextuality is robust
```

